Effect Of Growth Regulators On Growth Yield And Ions

Effect of Some Plant Growth Regulators on the Growth of Kaghzilime Seedlings

Effect of Plant Growth Regulators on the Fruiting of the Tomato

The Effect of Interactions Between Growth Regulators on Plant Growth and Yield

Effect of Growth Regulators on Physiological Aspects of Cowpea

Plant Growth Regulators

The Effect of Plant Growth Regulators on Plant Parasitic Nematodes

Effect of Growth Regulators on Growth and Yield of Safflower (Carthamus Tincterius L.) Genotypes

Page 1/4
The Effect of Growth Regulators on Rough Turf at Coles County Airport

Effect of Growth Regulators on Peach Fruit Growth and Maturation

The Effect of Plant Growth Regulators on Narcissus Bulbs Naturalised in Amenity Turf

The Effect of Blanching, IBA Concentration, and Plant Growth Regulators on Growth and Overwinter Survival of Softwood Cutting Propagated Ornamentals

Effect of Plant Growth Regulators on Summer Crop Production in Tomato

Structural and Functional Aspects of Transport in Roots

The Effect of Plant Growth Regulators on the Electron-transport in Plants

The Effect of Growth Regulators on the Quality of "Delicious" Apples

Effect of Foliar Applications of Synthetic Plant Growth Regulators on the Agronomic Characteristics of Peas and Soybeans

Effect of Growth Regulators on Time of Bulbing and Yield of Long Day and Short Day Onion Varieties

Effect of Growth Regulators on Cotton

Effect of Growth Regulators on Reproduction in Soybeans

Studies on the Effect of Growth Regulators on Growth and Flowering of Potted Geraniums, Fuchsias and Begonias What are plant growth regulators? In the title, and throughout the text, we have adopted this expression to describe a population of endogenous molecules and synthetic compounds of similar structure that are believed to play important roles in the regulation of plant differentiation and development. For many years, plant scientists have endeavoured to understand the nature and action of plant growth regulators and, as a result, an awesome quantity of written material now exists describing these chemicals and their effects. In this book we have aimed to distil this wealth of information into a more digestible form, and in particular we have focused our attention on a critical appraisal of the literature. The past few years have witnessed a change of emphasis in plant growth regulator research, which has been fuelled by powerful new techniques in molecular and cell biology. Today we can do more than just apply a plant growth regulator and quantify its effects; we have reached an exciting crossroads where plant scientists, molecular biologists and chemists can pool their expertise and apply it to the outstanding problems in this area. The combination of these three disciplines within the book is clear evidence of this. In keeping with a volume of this size, we have assumed that the reader has a sound knowledge of plant physiology and biochemistry. However, wherever possible, we have highlighted useful reviews which provide background information, along with recent publications that have contributed significantly to the literature.

The Effect of Growth Regulators on Blossom Thinning with Special Reference to Apples and Peaches

Effect of Growth Regulators on Flowering and Growth of Lettuce
The Effect of Various Plant Growth Regulators on Rough Turf at Coles County Airport

Effect of Growth Regulators on Seed Development and Indeterminate Type of Growth in Sugarbeet

The Effect of Plant Growth Regulators on the Growth of Closterium Moniliferum

Effect of Growth Regulators on Growth and Yield of Calendula (Calendula Officinalis L.)

The Effect of Plant Growth Regulators on Plant Height, Lodging and Yield in Barley

Effect of Light Quality and Growth Regulators on Plant Growth and Development

The Effect of Four Plant Growth Regulators on Insect Resistance and Yield of Cotton

Effect of Growth Regulators on Sprouting of Bermudagrass Sprigs

Effect of Growth Regulators on Growth and Yield of Onion Cv. N-53

The Effect of Plant Growth Regulators on Growth and Yield of Soybean Glycine Max (L) Merr

The Effect of Plant Growth Regulators on Plant Height, Lodging and Yield in Barley

Effect of Growth Regulators on Yield and Quality of Mungbean Sprouts Grown in an Automatically Controlled Chamber

Effect of Growth Regulators on Morphological Characteristics, Seed Quality, and Yield of Peanuts in Florida and Guyana

Effect of Certain Growth Regulators on Seed Stalk Development in Lettuce and Celery

The Effect of Growth Regulators on Germination and Early Establishment of Grain Sorghum

Effect of Growth Regulators on Stomatal Movements in Rice

The Effect of Plant Growth Regulators on Nonstratified Seeds of Prunus Persica (L.) Batsch The objective of this study was designed to investigate the effect of seed priming with different concentrations of growth bioregulators (i.e. indole acetic acid, gibberellic acid or kinetin) on growth and metabolism as well as productivity of Vigna sinensis L. Cream 7 plants throughout various stages of plant growth and development. It is clear from this investigation that seed priming with different doses of IAA, GA3 or kinetin improves the growth parameters of cowpea plants by increasing turgidity, stimulating leaf expansion, enhancing the production of photosynthetic pigments as well as the massive increase in photosynthetic activity. Furthermore, these growth bioregulators increased yield capacity of cowpea plants by inducing a massive increase in the pod length, number of pods/plant, number of seeds/pod and seed biomass as well as increases the protein content, total soluble sugars, sucrose and polysaccharide level. Also, it is evident from this study that kinetin application appeared to be
the most effective hormone in improving growth and productivity of cowpea plants.

THE EFFECT OF PLANT GROWTH REGULATORS ON THE RIPENING OF AVOCADO FRUIT SLICES.

Copyright code: 9b9826044b537fb2107df0dfsdev1e2b